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Here we will mainly talk about local theta correspondence.

The Howe duality principle is very neat and clean but also too abstract. Perhaps the �rst

question beyond the Howe duality is the following: given a dual reductive pair (G, G′) in Sp(W ),
when is the local theta lift Θ(� ) nonzero? This depends not only on � , but also on G′

, because

one can embed G into many di�erent metaplectic groups. We will try to explain that often it is

the local root number that characterizes nonvanishing of theta lift.

From now on F is a characteristic 0 local �eld of residue characteristic ≠ 2. We use Mp(W )
to denote both ℂ×-cover and �2-cover of Sp(W ) to reduce notation. For an irreducible admissible

representation � of some group, �̃ means the contragredient of � .

1. What do we need?

Let us get straight into the problem. A quick recap of local theta lift is as follows.

Theorem 1.1 (Local Howe duality principle). Let (G, G′) be a dual reductive pair in Sp(W ). Let
G̃, G̃′ be the inverse images of G, G′ in Mp(W ), and let j ∶ G̃ × G̃′ → Mp(W ) be the natural
homomorphism. Let ! be the Weil representation of Mp(W ) and, for � an irreducible admissible
representation of G̃, let S(� ) be the �-isotypic quotient of j∗!. Then S(� ) = � � Θ(� ) for a G̃′-
representation Θ(� ), and this is either nonzero or an admissible representation of G̃′ of �nite length,
which has a unique irreducible quotient �(� ) called the local theta li�. The local theta lift give an
injective map from the set of irreducible admissible representations of G̃ having nonzero theta lift to
G̃′ to the set of irreducible admissible representations of G̃′.

Remark 1.1. As both central ℂ×’s in G̃ and G̃′
act by the identity character, we necessarily need

� to have the identity as its central character.

Thus we need to understand j∗! better to say something more. We do this by using our favorite

reductive dual pair, (Sp(W ),O(V )) inside Sp(W⊗V ) (we will however eventually switch to unitary

groups, which is more convenient to work with, after this motivational section is �nished).

We �rst address some confusing aspect of Weil representation. Sometimes Weil representation

is de�ned as a representation of Mp(W ) × O(V ) on (V n) where dimW = 2n, O(V ) acts by how

it acts on V n
and Mp(W ) acts with formula involving Fourier transform (Schrödinger model for

the “degenerate Weil reprsentation”; or sometimes people call this as the Weil representation and

the morally-correct Mp(W ⊗V )-representation as the oscillator representation). But this is really

just the restriction of the usual Weil representation of Mp(W ⊗V ) de�ned as lifting of projective
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representation of Sp(W ⊗V ) on the Heisenberg representation to Mp(W ) × O(V ). Abstractly this

is it, but when you try to compute with it, the problem becomes more subtle: Sp(W ),O(V ) are

subgroups of Sp(W ⊗V ) so it is not clear how to “restrict” a representation ofMp(W ⊗V ) to these.

The problem is twofold:

∙ Mp(W ⊗ V )→ Sp(W ⊗ V ) splits over O(V ) ⊂ Sp(W ⊗ V ), but noncanonically; you can

twist by any character of O(V ).
∙ Mp(W ⊗ V ) → Sp(W ⊗ V ) in general does not split over Sp(W ) (more precisely, splits

if and only if dimV is even). But there is a canonical way to choose a lifting Mp(W )↪
Mp(W ⊗ V ) of Sp(W )↪ Sp(W ⊗ V ). In particular the O(V ) action as above is a result of

a noncanonical choice.

Remark 1.2. This is actually the only case of dual reductive pairs where the metaplectic group

might not split over one of G or G′
, so one can indeed make sense of restriction of Weil repre-

sentation in other cases, after making choices.

In any case, we write down the well-accepted Schrodinger model for this degenerate Weil repre-

sentation to say more:

(! ,V (m(a), z)')(x) = � V (det(a), z)| det(a)|
m/2'(xa),

for a ∈ GLn(F ), m ∶ GLn(F ) ∼←←←←←←←←→MP , the Levi of the Siegel parabolic P , and

� V (x, z) = �V (x)

{
-z m odd

1 m even

,

with

�V (x) = (x, (−1)m(m−1)/2 det(V ))F

(one might want to call disc(V ) instead of det(V )),

(! ,V (n(b), 1)')(x) =  (
1
2
tr((x, x)b))'(x),

for b ∈ Symn F , n ∶ Symn(F ) ∼←←←←←←←←→NP , the unipotent radical of P , and

(! ,V (w, 1)')(x) = - ∫
V n
 (− tr((x, y)))'(y)dy,

for w =
(

1n
−1n )

. In the above formulae - means some 8th root of 1 (Weil index).

If we look at the formulae, we can notice that, apart from change of evaluation points (i.e. x
goes to xa), the Siegel parabolic P = MPNP acts exactly as the principal series IMp(W )

P (� V | det |
m
2 −

n+1
2 ),

where IMp(W )
P is the normalized induction. Thus, the map

(V n) �V←←←←←←←←←←←←←→ IMp(W )
P (� V | det |

m
2 −

n+1
2 ),
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de�ned by

�V (')(g) = (! ,V (g)')(0),

is O(V ) × Mp(W )-equivariant, where we give a trivial O(V )-action on the RHS. Thus, �V factors

through the O(V )-coinvariant quotient of (V n), denoted as Rn(V ) (this should be thought as the

theta lift of the trivial representation of V , Θ(1V ,W )). We have the following basic theorem.

Theorem 1.2 (Rallis). �V ∶ Rn(V )→ IMp(W )
P (� V | det |

m
2 −

n+1
2 ) is injective.

Proof. The proof is quite complicated. The case of (Sp(W ),O(V )) is proved as Theorem II.2.1 in

[R]. The general case for type I pairs is proved as Theorem 7 of Chapter 3.IV in [MVW]. �

Although we omitted the proof, this is certainly believable (what else could be in the kernel?!).

Now here comes a real upshot:

Proposition 1.1. For � a genuine irreducible admissible representation of Mp(W ) if dimV is odd
and an irreducible admissible representation of Sp(W ) if dimV is even, we have

Θ(�, V ) ≠ 0⇔ HomG×G(R2n(V ), � ⊗ � ) ≠ 0,

where G = Mp(W ) or Sp(W ).

Proof. Let’s just think G as Mp(W ) because it’s annoying to write down Mp(W ) or Sp(W ) every

time. We �rst explain what we mean by R2n(V ) as a representation of G × G. Note that for any

two symplectic spaces W1,W2 of dimension 2n1, 2n2, there is a canonical embedding

j ∶ Mp(W1) × Mp(W2)↪ Mp(W1 ⊕ W2),

by “multiplying cocycles”. Then it is easy to show that

j∗! ,W1⊕W2 = ! ,W1 ⊗ ! ,W2 .

So R2n(V ) can be in particular seen as a representation of G × G.

Now we apply this to theta lifting. Let Wi = Wi ⊗ V . If � ∈ Irr(O(V )) and if �1 and �2
are nonzero irreducible quotients of Θ(� ,W1),Θ(� ,W2), respectively, then there are surjective

equivariant maps

! ,Wi → � ⊗ �i ,

which gives

j∗! ,W1⊕W2 → � ⊗ �1 ⊗ � ⊗ �2,

equivariant under O(V ) × Mp(W1) × O(V ) × Mp(W2)-action. As every � ∈ Irr(O(V )) is self-dual,

� ≅ �̃ , so we obtain a surjective map

j∗! ,W1⊕W2 → �1 ⊗ �2 ⊗ � ⊗ �̃ → �1 ⊗ �2 ⊗ 1V ,
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equivariant for Mp(W1) × Mp(W2) × O(V ). As the O(V )-action on the RHS is trivial, it factors

through O(V )-coinvariant quotient of degenerate Weil representation which is exactly Rn1+n2(V ).
So we proved

(∗) ⋯⋯ � has nonzero theta lifts to W1,W2 ⇒ HomMp(W1)×Mp(W2)(Rn1+n2(V ), �1 ⊗ �2) ≠ 0.

Now applying this to our situation, if � has a nonzero theta lift � , then we can apply (*) to � to

give one side of Proposition.

For the converse, suppose HomG×G(R2n(V ), � ⊗� ) ≠ 0. Then, this gives a nonzero quotient map

� ∶ ! ,W ⊗ ! ,W → � ⊗ � ⊗ 1V . Choose f1, f2 ∈ (V n) such that �(f1 ⊗ f2) ≠ 0, and choose � ∨ ∈ �∨

such that (1 ⊗ � ∨)(�(f1 ⊗ f2)) ≠ 0. Then

! ,W → �,

f ↦ (1 ⊗ � ∨)(�(f ⊗ f2)),

is G-equivariant and is nonzero (at f1). This shows that Θ(�, V ) ≠ 0. �

Remark 1.3. Here we secretly used the Howe duality principle (i.e. sloppy about Θ and its

irreducible quotient). A little more care will give a proof independent of Howe duality principle.

Recall that a quadratic space over a local �eld is determined by three invariants:

∙ dimension;

∙ discriminant = determinant, or the quadratic character associated to it (�V in our notation);

∙ and the Hasse invariant, which is valued in ±1.

In particular, given a dimension and a quadratic character, there are two possible choices for an

orthogonal space having the chosen dimension and quadratic character. We denote them as V +

and V −
. Then, both Rn(V +) and Rn(V −) live in the same principal series, IMp(W )

P (� V | det |
m
2 −

n+1
2 ),

because the data used in the principal series only depend on dimension and quadratic character.

We have the two general principles which lead to the theta dichotomy principle.

(DP1) Note that our principal series has exponent
m
2 −

n+1
2 for the determinant character. Let

In(s, � V ) ∶= I
Mp(W )
P (� V | det |s), where n = dimW . Then, whenever two R2n’s live in I (0,  )

(in this case m = 2n + 1), each R2n is irreducible, and I2n(0, � V ) = R2n(V +) ⊕ R2n(V −).
(DP2) For all but �nitely many s, dimHomG×G(I2n(s, � ), � ⊗ � ) = 1, and s = 0 is ok.

The above two principles imply the theta dichotomy principle.

Principle 1.1 (Theta dichotomy). Given � ∈ Irr(G), exactly one of Θ(�, V +) and Θ(�, V −) is
nonzero.

Proof. By (DP1) and (DP2), dimHomG×G(R2n(V +), � ⊗ � ) + dimHomG×G(R2n(V −), � ⊗ � ) = 1. So

exactly one of the two Hom’s is nonzero. �
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We will see some reasons behind (DP1) and (DP2). Along the way, we will see that the local

root number of � determines whether the nonzero map is supported on R2n(V +) or R2n(V −). This

re�ned phenomenon is called the epsilon dichotomy.

Principle 1.2 (Epsilon dichotomy). Given the dimension and the discriminant, the V over which
Θ(�, V ) ≠ 0 is determined by the local root number (=�-factor) of � .

2. Local root numbers

From now on, we switch our discussion to unitary groups. This is because there are many

complications in dealing with symplectic or orthogonal groups. For example, the picture of dual

reductive pair is extremely asymmetric in symplectic-orthogonal case.

We will try to brie�y recall the de�nition of local L and � factors in terms of doubling method

due to Piatetski-Shapiro–Rallis. We use W for a skew-Hermitian space over E/F , and V for a

Hermitian space over E/F . Let W− be the space W with the skew-Hermitian form −⟨, ⟩W . Then

W ⊕ W− has a complete polarization W−Δ ⊕ WΔ where W−Δ is the graph of minus the identity

and WΔ is the diagonal W . Then U(W + W−) ≅ U(n, n), and we can take the Siegel parabolic

PΔ, the stabilizer of WΔ, which has Levi MΔ ≅ GLn(E) and unipotent radical NΔ ≅ Hermn(K ), via

restriction to X ≅ En. Let

In(s, � ) = {Φ(nm(a)g, s) = � (det a)| det a|
s+ n2
E Φ(g, s)},

for any character � .

To motivate the de�nitio of local L-factors, we �rst explain how Piatetski-Shapiro–Rallis de-

�ned integral representation of automorphic L-function for cuspidal automorphic forms of clas-

sical groups via doubling method. To be more precise, if we work over a global �eld k, PS–R

constructed an integral representaion of the L-fuction L(� × � , s) for a cuspidal automorphic rep-

resentation (�, V� ) as the Rankin–Selberg integral of � and �̃ inside the “doubled unitary group”

U(W +W−) against the “Siegel Eisenstein series”. Namely, for ' ∈ V� , '̃ ∈ V�̃ , fs,� ∈ In(s, � ), the

Rankin–Selberg integral in concern is

Z (', '̃, fs,� ) = ∫
[U(W )×U(W )]

'(g1)'̃(g2)E((g1, g2), fs,� )�−1(det g2)dg1dg2,

where U(W ) × U(W )↪ U(W +W−) comes from W +W−, and

E(ℎ, fs,� ) = ∑
∈PΔ⧵ U(W+W−)

fs,� (ℎ).
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The reason why it works nicely is because it gives Eulerian integral after you unfold, just like the

classical Rankin–Selberg integral. Namely,

Z (', '̃, fs,� ) = ∫
[U(W )×U(W )]

'(g1)'̃(g2)E((g1, g2), fs,� )�−1(det g2)dg1dg2

= ∫
[U(W )×U(W )]

'(g1)'̃(g2) ∑
PΔ(k)⧵ U(W+W−)(k)

f ( (g1, g2))�−1(det g2)dg1dg2

= ∑
∈PΔ(k)⧵ U(W+W−)(k)/(U(W )×U(W ))(k)

∫
(U(W )×U(W )) (k)⧵(U(W )×U(W ))(A)

'(g1)'̃(g2)f ( (g1, g2))�−1(det g2)dg1dg2,

where (U(W ) × U(W )) is the centralizer of  . The double quotient parametrizes the orbits of

(U(W ) × U(W ))(k) on PΔ⧵ U(W +W−). Every orbit other than the main orbit  = 1 is negligible,

in a sense that the stabilizer inU(W )×U(W ) is something like a parabolic subgroup such that it has

a unipotent radical of a proper parabolic as a normal subgroup. Then one can factor the integral

so that it has an integral over this unipotent radical as a factor, which vanishes by cuspidality of

� . Thus, only the summand for the main orbit survives, so that

Z (', '̃, fs,� ) = ∫
U(W )Δ(k)⧵(U(W )×U(W ))(A)

fs,� ((g1, g2))'(g1)'̃(g2)�−1(det g2)dg1dg2

= ∫
U(W )Δ(k)⧵(U(W )×U(W ))(A)

fs,� ((g−12 g1, 1))'(g1)'̃(g2)dg1dg2

= ∫
U(W )(A)

fs,� ((g, 1))(∫
U(W )(k)⧵ U(W )(A)

'(g2g)'̃(g2)dg2) dg

= ∫
U(W )(A)

fs,� ((g, 1))⟨� (g)' ∣ '̃⟩dg,

which factors as a product of local zeta integrals. Namely, if ' = ⊗�v , '̃ = ⊗�̃v and fs,� = ⊗fs,�v ,
then Z (', '̃, fs,� ) is the product of local zeta integrals

Zv(�v , �̃v , fs,�v ) = ∫
G(kv )

fs,�v ((g, 1))⟨�v(g)�v , �̃v⟩dg.

Indeed, this gives what we will call as L-function for L(s, � × � ) because at unrami�ed places for

a suitable choice of fs,� , Zv(� ◦v , �̃ ◦v , fs,� ) = L(s,BCKv /kv (�v) ⊗ �v) where ◦ means spherical vectors.

More pedantically, we can de�ne local L-factor and local �-factor via the following process,

just as in the classical Rankin–Selberg case. Below we drop v and go back to our original local

setting. Let q be the cardinality of the residue �eld of F .

(1) The local L-factor is the normalized generator of the ℂ[q−s , qs]-fractional ideal (� × � )
which is theℂ-span of local zeta integrals for “good sections” fs,� ∈ In(s, �v). In the classical

Rankin–Selberg situation, the analogous ideal is the span over the “standard sections”, i.e.

twists of a section in In(s0, �v) (for a �xed s0 with large enough real part) along s. Here,

one cannot use only the standard sections, partly because the “suitable choice” to realize

the expected L-factor is not a standard section. One needs to de�ne a consistent notion
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of “good sections,” which contains standard sections and more; they should contain the

“suitable choices”, and they should be stable under the normalized intertwining operators

which will be recalled shortly.

In short, (�×� ) = (
1

P (q−s )) where P (X ) ∈ ℂ[X ]with P (0) = 1, and then we let L(s+ 1
2 , �×

� ) ∶= P (q−s)−1 (shift by 1/2 is merely cosmetic), analogous to the classical Rankin–Selberg

case.

(2) There are accordingly normalized intertwining operators M ∗(s, � ) ∶ In(s, � ) → In(−s, �†)
where �†(x) = � (x)−1, which arises in the functional equation of L-factors. Recall that an

unnormalized (i.e. easy-to-write-down) intertwining operator M(s, � ) can be de�ned as

M(s, � )Φ(g) = ∫
Hermn(E)

Φ(wn(x)g, s)dx.

Then M ∗(s, � ) is some constant times M(s, � ), consistently chosen, so that

M ∗(−s, �†)◦M ∗(s, � ) = 1.

Then the local functional equation involves (s,Φ)↔ (−s, M ∗(s, � )Φ).
(3) The local  -factor is the factor arising in the local functional equation for Z (� , �̃ , fs)

and the local �-factor is the factor arising in the local functional equation for
Z (� ,�̃ ,fs )

L(s+ 12 ,�×� )
.

Namely, we de�ne local �-factor as

Z (−s, � , �̃ , M ∗(s, � )f )
L( 12 − s, � , �†)

= �(s +
1
2
, � , � )

Z (s, � , �̃ , f )
L(s + 1

2 , � , � )
.

Remark 2.1. We are secretly suppressing the choice of additive character  that is used to choose

normalization M ∗(s, � ) consistently. Everything depends on this  (except the local L-factor).

3. Epsilon dichotomy

Now all these foundational discussions are not in vain, as these will be a part of the proof for

the epsilon dichotomy principle.

We start by stating some facts in the unitary case analogous to what we’ve observed for the

symplectic-orthogonal reductive pair. Let dimW = n, dimV = m. The metaplectic group for

either W ⊗ V or (W + W−) ⊗ V splits over U(W ), U(V ), etc., but the choice of splitting homo-

morphism is not unique, and in particular involves the choice of characters �n, �m of E× where

�n|F× = �mE/F , and �E/F is the quadratic character. This choice has to appear in our formulae, because

for example if we pullback the Weil representation of Mp((W +W−) ⊗ V ) to U(W ) × U(W ) using

this splitting, then it becomes !V ,� ⊗ (�m ⋅ !̃V ,� ), where !V ,� is the pullback of Weil representation

of Mp(W ⊗V ) via the same choice of splitting. This is why even de�ning a theta lift involves the

choice of � . We denote � = (�n, �m) and !V ,W ,� = !V ,� ⊗ !W,� .

Our �rst crucial observation was that the Siegel parabolic of Sp acts like a principal series for

the distribution �0 (i.e. the �-distribution at 0). The analogous fact is that the degenerate Weil
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representation for the dual pair (U(W +W−),U(V )) has the same property. Namely, !V ,W+W−,� can

be realized on (V n) as a Schrödinger model, and there is a natural map

!V ,W+W−,� → In(
m − n
2

, � ),

' ↦ !V ,� (g)'(0),

which factors through the quotient of !V ,W+W−,� where U(V ) acts by the character �n. We denote

this quotient by Rn(V , � ). Again, by [MVW], Rn(V , � ) → In(m−n2 , � ) is an injection. Also, we can

argue similarly as before that

Θ� (�, V ) ≠ 0 ≠ 0⇔ HomU(W )×U(W )(Rn(V , � ), � ⊗ (� ⋅ �̃ )) ≠ 0.

Remark 3.1. Actually that we can argue similarly as before is a lie, and the proof of this is more

di�cult, because we don’t have self-duality. We need to exploit some kind of extra involution

which amounts to transforming a representation to its contragredient, which is usually called

the MVW involution in the literature. See [HKS] for the proof of this statement.

Given the dimension m, there are two Hermitian spaces of dimension m over E, determined

by the sign

�(V ) = �E/F ((−1)
m(m−1)

2 detV ) ∈ {±1}.

We denote V �
m to be the E-Hermitian space of dimension m of sign �. Then both Rn(V +

m, � ) and

Rn(V −
m, � ) lie inside In(m−n2 , � ).

Now we are back in the game, and we can prove the theta dichotomy principle for unitary

groups.

Proof. We have following facts (proofs can be found in [KR] and [KS]).

∙ Rn(V +
m, � ) is always not isomorphic to Rn(V −

m, � ). This is believable.

∙ The Siegel principal series In(s, � ) can have at most 2 irreducible submodules in any case.

Indeed, let � be any invariant submodule of In(s, � ). Then by Frobenius reciprocity,

HomU(n,n)(�, In(s, � )) = HomGLn (�N , � | − |some power+s),

so the problem is really about counting the dimension of some eigenspace of the Jacquet

module of In(s, � ). But the Jacquet module In(s, � )N has a very explicit description, namely

it has a �ltration

In(s, � )N = I 0 ⊃ ⋯ ⊃ I n ⊃ I n+1 = 0,

where the successive quotients I r /I r+1 ≅ IndGLnPn−r ,r (�r ), for Pn−r ,r the maximal parabolic cor-

responding to the partition n = n − r + r and �r is some very explicit character. From the

knowledge of explicit characters one deduces the desired result.
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Then, (DP1), or In(0, � ) = Rn(V +
n , � ) ⊕ Rn(V −

n , � ), just follows from the above two facts, because

In(0, � ) is a unitary representation, so it is completely reducible (!).

For (DP2), it is pretty standard that dimHomU(W )×U(W )(In(s, � ), � ⊗ (� ⋅ �̃ )) ≤ 1, for all s, if �
is supercuspidal. Note on the other hand that our local zeta integral gives precisely the desired

intertwining map:

Z ∗(
m − n
2

) ∶ In(
m − n
2

, � ) → �̃ ⊗ (� ⋅ � ),

Φ ↦ (� ⊗ �̃ ↦
Z (s, � , �̃ ,Φ)
L(s + 1

2 , � , � )
|s=m−n2 ) ,

where Φ ∈ In(m−n2 , � ) is extended to the standard section. In our choice of s = 0 (m = n), Z ∗(0)
gives a nonzero element and spans HomU(W )×U(W )(In(s, � ), �̃ ⊗ (� ⋅� )). Switching � to �̃ we get the

theta dichotomy. �

Remark 3.2. Again there is a slight lie, because Z ∗(s) might vanish as good sections are not

standard sections. In that case, the leading coe�cient of the Laurent expansion of
Z
L will do the

trick.

We can furthermore decide whether it is V +
n or V −

n to which � lifts to a nonzero representation.

Theorem 3.1 (Epsilon dichotomy, [HKS]). Let � be a supercuspidal representation of U(W ), and
let � be a character of E× such that � |F× = �nE/F . Then Θ� (�̃ , V ) ≠ 0 if and only if

�(
1
2
, � , � ) = �E/F (−2)n�E/F (detV ).

Proof. Note that our choice of � implies � = �†, so there is extra structure on In(0, � ), namely

we have M ∗(0, � ) ∶ In(0, � ) → In(0, � ) with M ∗(0, � )2 = 1. This will help us detect the di�erence

between Rn(V +
n , � ) and Rn(V −

n , � ).

(1) The functional equation for local zeta integral implies that

Z ∗(0)◦M ∗(0, � ) = �(
1
2
, � , � )Z ∗(0).

(2) One way of seeing Rn(V +
n , � ) � Rn(V −

n , � ) is by the fact that they have di�erent Whittaker

functionals. Namely, for Φ ∈ In(s, � ), we can de�ne the Whittaker integral

WT (s)Φ(g) ∶= ∫
Hermn(E)

Φ(wn(x)g, s) (tr(Tx))dx,

for T ∈ Hermn(E). Then, W−2T (0) is nonzero on Rn(VT , � ), where VT is the Hermitian space

of dimension n with Hermitian form de�ned by T , and the same Whittaker functional is

zero on the other Hermitian space of same dimension.

(3) On the other hand, if det T ≠ 0, we have a functional equation

WT (−s)◦M ∗(s, � ) = � (det T )−1| det T |−s�E/F (det T )n−1WT (s).
9



Applying this to s = 0, we have

WT (0)◦M ∗(0, � ) = �−1E/F (det T )WT (0).

(4) For V = V ±
n , take T to be a Hermitian matrix representing the Hermitian form for V . Then

we have

W−2T (0)◦M ∗(0, � )|Rn(V ,� ) = �E/F (det(−2T ))W−2T (0),

which implies that M ∗(0, � ) acts on Rn(V , � ) as the scalar �E/F (−2)n�E/F (detV ). Combined

with the functional equation for local zeta integral, we get the epsilon dichotomy.

�

4. Witt tower and first occurrence

In this section we describe, without proof, some more re�ned phenomena related to the theta

dichotomy.

∙ Wi� tower. We can consider lifting a �xed supercuspidal representation � of U(W ) to

various di�erent V ’s. In particular, we can consider sending it to various entries in a Wi�
tower, which is a tower of Hermitian spaces with a �xed sign. To be more precise, if

dimW is even, then we can consider two Witt towers {V +
2r} and {V −

2r}; V +
2r =∶ Vr ,r is the

split space (r copies of hyperbolic planes), andV −
2r = V −

2 ⊕Vr−1,r−1. Similarly, if dimW is odd,

then the two Witt towers are {V +
2r+1} and {V −

2r+1}. Here it also holds that V ±
2r+1 = V ±

1 ⊕ Vr ,r ,
and V ±

1 is one-dimensional Hermitian space over E with Hermitian form (x, y) = �xy with

� ∈ F × with �E/F (�) = ±1.
∙ Persistence. The basic property of theta lifts to Witt towers is persistence, which means

that if Θ� (�, V �
m) ≠ 0, then Θ� (�, V �

m+2r ) ≠ 0 for all r ≥ 0. This is quite easy to see, if you

use that

!V �
m+2r ,W ,� ≅ !V �

m ,W ,� ⊗ !Vr ,r ,W ,1.

Namely !Vr ,r ,W ,1, similar to the symplectic-orthogonal case, as a U(W )-representation is

just (W r ) with its natural U(W )-action. Thus any U(W )-equivariant map

� ∶ !V �
m ,W ,� → �,

can be paired with obvious nonzero U(W )-equivariant map �0 ∶ (W r )→ 1W , f ↦ f (0),
which gives a nonzero U(W )-equivariant map

� ⊗ �0 ∶ !V �
m+2r ,W ,� → �.

In particular, by the persistence property, we can talk about the first occurrences of

nonzero theta lift on each Witt tower. We denote it by m�
0(�, � ). Theta dichotomy is then

precisely that

min{m+
0 (�, � ), m−

0 (�, � )} ≤ n,

max{m+
0 (�, � ), m−

0 (�, � )} > n.
10



∙ Stable range. A priori it might be the case that every theta lift to a Witt tower can be

zero. But this does not happen; namely, if V �
m ⊃ Vn,n, then Θ� (�, V �

m) ≠ 0. So in particular

m�
0(�, � ) ≤ 2n + 2. A proof of this also uses that !Vn,n ,W ,1 ≅ (W n). Given a �xed standard

basis e ofW over E (n-dimensional), we can view it as an element ofW n
, and thus g ↦ e⋅g

gives an inclusion U(W ) ↪ W n
, which is right-U(W )-equivariant. Thus the restriction

gives a surjective equivariant map (W n) � (U(W )), and any irreducible admissible

representation appears as a quotient of (U(W )).
∙ First occurrence. It is a general phenomenon that, if we start with � supercuspidal, then

the �rst occurence of a nonzero theta lift in a Witt tower is supercuspdial, whereas any

later occurrence is not supercuspidal.

∙ Early li�s and poles. In fact, “early nonzero theta lifts” can be accounted for poles at

local L-factor. Speci�cally, if min{m+
0 (�, � ), m−

0 (�, � )} = n − 2r , then the local L-factor

L(s, �̃ , � ) has simple poles at s = − 12 , −
3
2 ,⋯ , −r + 1

2 , i.e. of form

L(s, �̃ , � ) =
1

(1 − q−(s+ 12 ))(1 − q−(s+ 32 ))⋯ (1 − q−(s+r− 12 ))
.

From this we can easily construct counterexample to local analogue of naive Ramanujan

conjecture. Namely, the later-occurring Witt tower has �rst occurrence index ≥ n + 2. Let

this �rst occurrence nonzero theta lift be denoted as � ′. Then, for � ′, � is an “early lift,” so

the local L-factor for � ′ has a pole outside critical strip, even though it is supercuspidal.

This says that � ′ is supercuspidal but not tempered.

∙ Conservation relation. Finally, there is a very precise relation between m+
0 (�, � ) and

m−
0 (�, � ), which is called the conservation relation:

m+
0 (�, � ) +m−

0 (�, � ) = 2n + 2.

Note that the theta dichotomy is a corollary of this.

Remark 4.1. There is a global analogue of this picture. For example, the cuspidal spectrum of

O(Q)(A) has an orthogonal decomposition R1 ⊕⋯ ⊕ Rm, where Ri is consisted of those having its

�rst occurrence at Sp2i(A) among all symplectic groups. The �rst occurrences are cuspidal, and

the automorphic multiplicity of � ⊂ A (O(Q)) is equal to the automorphic multiplicty of the �rst

occurrence in A (Sp2i). The �rst occurrence can be read o� from poles of L-functions.
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